Problem 1

Take the particle to be at rest in the system K’, moving along the x axis at
velocity v with respect to the system K.
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Now, let us analyse the fields in the system K, in the plane z = 0 (there
is rotational symmetry along the x axis).
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But, given the position of a point, measured at any time in the system
K’ (the charge is at rest in that frame), the value of x and y at the time t
will be determined by

' = (x — vt)y, Y =y (6)
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where we have used the symmetry under rotations to generalize the value of
the field in the z-direction.

Therefore, the field is radial with respect to the particle at any time ¢,
but not spherically symmetric, due to the appearence of the v? factor along
the x-direction.

What about the magnetic field?

B, =B, =0, B,=—Ey (8)



The field is perpendicular to the direction of motion (and symmetric under
rotations along the x axis). Since E, = E, v, then
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|B| = qv/c (9)

Observe that, as the velocity approaches the speed of light (take ¢ = 0,
for simplicity), then the electric field is still radial, but
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The magnitude along the x-axis at a fixed time in the reference frame K
tends to zero, at any non-vanishing separation r from the moving charge.

A test particle at rest in the axis of motion in the system K at time ¢ =0
will feel a force acting on it which vanishes as the moving particle velocity
approaches c, even if it is very close to the original charged particle !

What is the description of this process in the system K’?

The separation between the moving particle and the test particle in K’ is
given by:
T =y (11)

Therefore, as the velocity approaches c, the observer in K’ will see that the
test particle and the moving particles are separated by asymptotically large
distances, independently of x # 0. The force vanishes also in K’, due to this.
Indeed since the magnetic field vanishes along the x-axis, the force is purely
electric, and E,(z,0) = E!(z',0).

Problem 2.

The easiest way of solving this problem is to define the plane defined by
the magnetic and electric fields as the yz plane, and move to a reference
frame K’ which moves at a constant speed u, with respect to the original
frame K. The requirement of parallelism of the electric and magnetic fields
is equivalent to the condition that ExB = 0. Or, equivalently,
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Using the transformation laws
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and Eq. (12), we get the relation
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The velocity u, then fulfills the relation
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In vectorial form
u/c ExB
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The solution for u, is

[us| _ lo (E)ll (17)
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Three comments:
1) For fields which are almost parallel to each other, the solution is simply
|uz/c| ~ 1/|a|, which is indeed a small number.

2) The above equation seems to have solutions even in the case in which
the fields are perpendicular to each other. However, we know that in this
case it is impossible to find a system of reference in which they are parallel
to each other. The solution to this paradox is that the obtained velocity u,
in Eq. (17) is the appropriate one to make either the magnetic or electric
field vanish. Observe also that if the fields are perpendicular and of equal
magnitude, we obtain |a| = 2, or |u,| = ¢. Therefore, there is no physical
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inertial reference system leading to the desired solution. (With physical I
mean one in which I can put an observer and a system of clocks).

3) Once I found a solution to the above problem, I can find infinitely many
more by choosing other reference frames moving at constant speed in the
direction of the fields in the system K’.

Problem 3.

Let us take the magnetic and electric fields pointing in the direction of the
x-axis, ¥ = EZ, B = BZ.
Then, the equations of motion are
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where £ is the energy of the particle.
From the first equation, we obtain,
2qEt
Up = = ‘2 (22)
The Energy variation is given by
d 2q¢’E*t
%5 = qFu, = z (23)

Therefore,

E=/E + PE? (24)

But this may be rewritten in terms of p, = £u,/c®. Indeed,

E=1/E + 2p2 (25)



From here, remembering that, in general,
E* =mict + chz +cp2 + Pp? (26)

we get that the modulus of the momentum in the direction perpendicular to
the fields remains constant. In addition, they should fulfill the equation

d , qc B ,
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But, since we know that the modulus should remain constant, the solution
to this equation should be of the form

Py +ip, = poexp(i(d + ) (28)

with o an arbitrary constant and
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or, equivalently
B 1 (qFEct
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Observe that, for E — 0, this leads to a constant frequency equal to w =

gcB/&.

For o = 0, we get p, = po cos(¢), p, = posin(¢), meaning that the particle
at time ¢ = 0 has no momentum in the z direction. It is now trivial to obtain
the trajectory. Let us assume that the particle is at the origin at the time
t = 0. Taking the expression of u,, Eq. (22), we obtain, by integration,

1 T ——
Tr = q_E ( 53 + 02q2E2t2 — 50) (31)

while the equations for the y and z corrdinates can be easily integrated out,
leading to

y = Z%O sin (32)
:%(—cosqﬂ-l). (33)

The particle moves along an helix, with fixed radius but increasing step.
The angular velocity decreases as the energy increases.
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We already commented that for £ — 0, we get a constant frequency.
In addition, both the energy and the momentum and velocity along the x-
direction become constant. Therefore, we recover the equations of a particle
moving in a constant magnetic field. The trajectory is an helix with fixed
radius and step.

For B — 0, instead, ¢ tends to zero linearly with B. Hence, replacing
sin ¢ with ¢ and cos ¢ by 1, we get that, while the equation of motion in the
x direction is not modified,

_CPo . 4 cht)
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and z = 0. Therefore, we recover the solution for a particle in a constant
electric field.



